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NON-STATIONARY PROBLEM OF A PLANE HYDRAULIC FAULT CRACK 

IN A FLUID-SATURATED STRATUM* 

YU.N. GORDEYEV 

The problem of a vertical hydraulic fault crack /l/ in a 
fluid-saturated stratum wedged out by a viscous filtering fluid flow is 
considered. It is assumed that the state of stress and strain of the 
stratum is described by a system of Biot equations /2/. A system of 
elastic constant notation, proposed in /3/, is used. 

The non-stationary problem of a vertical hydraulic fault crack in a fluid-saturated 
stratum in one special case of representing the general solution of the consolidation theory 
equations reduces to the solution of an equation of piezoconductivity type with a source and 
a formula connecting displacement of the crack edges with the fault fluid pressure and the 
fluid leakage velocity through the crack walls. In the case of a fixed "ideal" crack, along 
which the pressure is constant, the problem of a hydraulic fault reduces to solving a 
one-dimensional singular integral equation for the Laplace transform. Asymptotic forms of the 
solution of this equation are found for long and short times. Representation of the general 
solution of the consolidation theory equations in the Papkovich-Neuber form was obtained to 
solve consolidation theory problem /4, 5/. Compressibility effects of the interstitial fluid 
/6/ were taken into account in the development of this method. A representation of the 
general solution of the consolidation theory equations in terms of two analytic functions of 
a complex variable /3/ was obtained in another approach to the solution of plane problems. 
Application of consolidation theory to the investigation of stationary problems of a hydraulic 
fault of a fluid-saturated stratum was started in /7, 8/. 

I. Formulation of the problem. Let a plane crack in an infinite porous fluid-saturated 
space in a homogeneous compressive stress field u,, be maintained in an open state by fluid 
heated within the crack, which can filter through its wall into a porous medium while moving 
along the crack. It is assumed that the borehole radius r0 can be less than the crack length 
L, and, consequently, effects associated with the presence of the borehole can be neglected. 

In particular, this crack theory problem occurs in connection with the problem of a 
hydraulic fault in an oil-bearing stratum /l/. 

A coupled theory of consolidation /3/ (i,jv k = 1,2,3, and summation is over repeated 
subscripts) is used to describe the strain of a fluid-saturated porous medium and the 
filtration of the interstitial fluid therein: 

daijh3xj = 0, uLj = oji (1.1) 
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(1.2) 

&-t&i4 m-mm,= $q&+,i(Tkk+$P) (1.3) 

Qi=pOUi=-Ppo+$P (1.4) 
1 

Here Uij is the total stress tensor, P is the porous pressure, B is the Scampton par- 
ameter, v is Poisson's ratio, v, is Poisson's ratio corresponding to conditions when the 
fluid cannot leave the medium /3/ C is the shear modulus, %J is the strain tensor, m is 
the mass of interstitial fluid per unit volume, PO7 mO are the density and mass of inter- 
stitiai fluid per unit volume in the undeformed state, k is a permeability factor, u is the 
fluid viscosity, and UI, Qf are the rate of filtration and the mass flow rate of the fluid 
being filtered in the i-th direction. 

For the plane state of strain (e,, = 0), which will also be examined below, Hooke's law 
for a fluid-saturated porous medium (1.2) takes the form (a, fi,r = 1,2) 

2Ge,, = uaB - Y (uw - 2 (1 - Y) qP) 6a~ (1.5) 

The axis la = 0 is selected to be along the crack with origin (x1 = 0, 5, = 0) at the 
centre of the crack. 

The motion of the heated fluid along the crack is described by the equation of continuity 
and Poiseuille's law 

(1.6) 

Here W is the opening of the crack edges,P,is the pressure of thefault fluid heatedinlthe 
crack, u is the velocity of fluid motion, and U is the rate of fault fluid leakage through 
the crack wall. 

The boundary conditions 

are imposed on the crack edges. 

2. Method of sotution. The system (l.l), (1.3)-(1.5) for the plane state of strain 
was reduced to a problem of determining two analytic functions of a complex variable by methods 
of the theory of singular integral equations /3/. Unlike this approach, we obtain a general- 
ization of the Kolosov formulas in the special case needed for the theory of a hydraulic fault 
crack in terms of an Airy function. 

Satisfying the equlibrium Eqs.tl.1) for the plane problem identically (a, fi = 1, 2), we 
introduce the Airy function 

CJQq = (--l)~+B~a~aeFlaz&rp (2.1) 

From the condition of strain compatibility 

aa~~~ia~,B + Baee21&zla = 2a=E,,iax,as, 

and the Hooke's law (1.5), taking (2.1) into account, we obtain 

A~F = -2nAp (A = avax12 + avax,y (2.2) 

We apply the theory of functions of a complex variable by using the following method /9/ 
to solve (2.2). We consider the independent variables 21. 2, and the functions F, P to be 
complex variables. We convert them to new variables which are 
independent in this case. 

2 = Z1 + ix,,E = x1 - ix, 
On returning to the original variables, when x1,z8 are real, 2 

and 2 become conjugate values of one complex variable. 
The representation of (2.2) in the variables a and F has the form 

a4Flazaai2 = --'t,na2Piazai (2.3j 

Integrating (2.3) and taking into account that the Airy function F should be real on 
changing to the real variables xIrxg, we obtain 
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TJ (49 x (4 are analytic functions and zo> z0 are certain constants. 
Substituting (2.4) into (2.1), we obtain after some reduction 

011 + u22 + 2rlP = 2 (cp’ (4 -t cp’ (3) 
I 

(Ill -uz* + %ia,,- 2q-& 1 Pa5 = --a[zqY(Z) + ;i)"(")] ($ = x') 
20 

(2.4) 

(2.5) 

We obtain from Hooke's law (1.5) and the definition of the strain tensor in terms of the 
displacement vector components 

o11 - ezz + 2io,, = 4GdDi&, D = w1 + iw, (2.6) 

(wi is the i-th component of the displacement vector w). 
Substituting (2.5) into (2.6) and integrating with respect to 2 we obtain 

2GD = n f f'd: + (3 - 4v)cp(z)- z@'(Z)-$(L) 
L. 

(2.7) 

We introduce the analytic function /lo/ 

CJ (2) = @ (z) + z@' (z) + ur (z), 4, (z) = 'p' (z), Y (z) = *' (z) 

which we use to find a representation for the stress tensor and displacements of the fluid- 
saturated porous medium in terms of two analytic functions from (2.5) and (2.7) 

us9 - iu,, + Q = @ (z) + a (Z) -+ (Z - Z) 5' (f) 

2G (-&q + i -& up)- Q = x@(z)- fi(i)-(z -2E)m’ (Z) 

Q=q,‘+q&dL, x=3-4v 
1. 

(2.8) 

Specifying the load on the upper and lower crack edges, we obtain a Dirichlet problem on 
the exterior of a slit for two analytic functions @(z).51(z). Using the superposition principle, 
we represent the stress and displacement fields in the form of the sum of two fields, one of 
which corresponds to a continuous body subjected to loads applied within the body (uO is a 
homogeneous compressive stress, and P, is the unperturbed interstitial fluid pressure), 
while the second is a body with a slit to whose surfaces loads are applied. The boundary 
conditions on the crack edges here have the form 

uzzf = co - P, (.q), o,,* = 0, x, = 0 & 0 (2.9) 

Moreover, the values of the function Q on the crack edges must be given to solve the 
boundary-value problem (2.8). It follows from (1.7) and (2.8) that 

Q* = Qlf + a* 

~f=‘1(~,(s,,t)--P,)+~/,ll[P,(~:,,t)--P,(s,,t)l; Qs*=F,.$jh 
X. 

(5@ = zo, InlzO = 0). 

The solution of the Dirichlet boundary-value problem (2.8) and (2.9) is known /lo/ 

(2.10) 
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(2.11) 

The condition of symmetry of the fluid pressure in the crack (P,(--xl, t) = P, (x1, t)) was 
taken into account in finding the constant C1. 

Since the load is applied symmetrically to the crack edges, the crack profile is also 
symmetric with respect to the origin: 70, (-X1, t) = 2u, (5r, t). Consequently % (-33% Q/&r = 
-azI.7, (zr, ty&T*. The velocity of fluid leakage from the crack is also symmetrical about the 
origin: 0(-x,, t)= “(x1,1). To satisfy these symmetry conditions it is necessary to set 
IO = 0. We here obtain 

Using (2.12), we find from (2.11) after integration with respect to x1 and simple 
reduction 

w(x,,t)-_q$L{p’~[ P,(61t)-uo-qrl(P,(S,t)-PP,)- 
0 

(2.12) 

(2.13) 

We obtain the stress intensity factor Kr from (2.8), (2.10) and (2.12) by taking account 
of the square root singularity of the stress tensor %a becoming infinite near the ends of 
the symmetrically loaded crack 

(2.14) 

For q = 0 expressions (2.13) and (2.14) yield the solution of the classical problem of 
a quasistationary crack of normal separation in an elastic medium. Components which depend 
on the velocity of fluid leakage from the crack occur in the expression for the crack opening 
in consolidation theory. 

The interstitial fluid pressure is described by a diffusion equation of the piezoconduc- 
tivity type that can be obtained from (1.3) and (2.5) 

(1 + -0) km3 
c= (l-v)qp(3-44rlB) ’ 

o= 4P+v)B 
3-4qB 

where c is the consoliation or diffusion coefficient f3/. 
The analytic function 0 (z), in (2.15) can be converted to the form 

(2.15) 

(2.16) 
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Taking the real part of the complex function (2.16) and changing to the real variables 
I,, I~, we obtain 

Therefore, a hydraulic fault in a porous fluid-saturated stratum is described by a 
system of non-linear integrodifferential equations including the equations of fluid motion in 
the crack (1.6), a piezoconductivity equation with a source (2.15) and (2.171, a functional 
relation between the crack opening and the pressure and the velocity of fluid leakage from 
the crack (2.131, and an expression for &(t) (2.14). In the general case this system of 
equations can only be solved by numerical methods. 

3. A stationary crack; 2 = eon& The crack length does not change with time if the 
stress intensity factor is less than the adhesion modulus of the rock. 

We consider the case when the fluid is injected into the crack at a constant pressure 
PO. If the hydraulic conductivity of the crack is considerably greater than the conductivity 
of the medium, then (1.6) reduce to the boundary conditions on the crack contour 

p (rr, t) = P, (3.1) 

Using the Green's_function method /ll/, we represent the solution of the piezoconduc- 
tivity Eq.i2.15) in the form 

The pressure P,(x,,r,, t) is determined by the potential of a simple layer /11/ 

Substituting (3.3) into (3.2) and taking account of condition (3.11, we obtain an integral 
equation to determine the rate of fluid leakage from the crack (rg=O) 

(3.4) 

Applying a LaplaCe transform to this equation and taking account of the expression for 
the source a (Rem)/& (2.17) we obtain after reduction (K,(z) is the Macdonald function} 

u(S.ll)h,(nl%l-El)dE'h{~ v(E,~)M(~l~,--Ell)d5- (3.5) 

--1 

l 

M 63 I xl - 5 I ) = K, (a I3 - E I ) + In (0. / x1 - E I) 
A (1, u) = K. (u j x1 - 2 I ) + K, (a j x1 -I- L 1 ) -5 In (u2 I Ea - xl2 I ) 

(I = 1/‘%, h = q/8, 6 = 2nk (PO - P-)/p 
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The parameter h characterizes the effect of the reaction of the strain of the medium on 
the fluid filtration. For h = 0 Eq.(3.5) corresponds to uncoupled consolidation. 

Eq.(3.5) is among the class of convolution-type singular integral equations that has been 
studied in detail. It has been shown /12/ for equations with Macdonald zero-th order kernels 
that on decomposing the solution into Mathieu functions, (3.5) reduces to an infinite system 
of linear algebraic equations that can be approximated by a finite system of equations. By 
obtaining the solution of these and applying the inverse Laplace transform, the unknown rate 
of fluid leakage from the crack v(zI,p) zIE [--I, 11 can be obtained with the necessary 
accuracy. Knowing the rate of fluid leakage, and the pressure in the crack, the crack opening, 
the stress intensity factor, and the interstitial fluid pressure distribution in the stratum 
can be obtained using (2.13), (2.14), (2.17), (3.21, and (3.3). 

The integral Eq.(3.5) for the Laplace transform of the rate of fluid leakage from the 
crack u(zr, p)zr I? I--1, 11 provides the possibility of performing qualitative investigations 
of the problem under consideration, in particular, of finding the asymptotics forms of the 
solution for short times (t-0) and long times (t-tw). 

4. The asp7iptOtic form Of the SotUtiOn Of (3.5) for kn'lg times. This case corresponds 
to small values of the parameter p(p+O), i.e., values of the transforms for small p yield 
the main contribution to the asymptotic form of the solution for long times on carrying out 
the inverse Laplace transformation. 

Making use of the asymptotic formula for the Macdonald function for small arguments 
(R, (2) = In (z"@) + 0 (Z), y = exp {c}; c is Euler's constant), we convert (3.5) to the well-known 
Carleman equation /13/ 

1 

s u(5,p)ln)~,-_I-1~E=%+Ni~ln~+o(p)] 
4 

N= i v(E>P)G 
4 

whose solution can be reduced to the form 

N 
v(q,p)=- - rca 1/Z” - zp 

N zz .- 
28 

PIncaP) + 0(/J') ' 

(4.') 

(4.2) 

Applying the inverse Laplace transformation to (4.2) and evaluating the integral by the 
saddle-point method for long times t (P -+ 0) we obtain a formula for the rate of leakage of 
the fault fluid from the crack 

(4.3) 

that agrees with the corresponding solution of this same problem without taking account of the 
reaction of the medium strain on the filtration process, i.e., without taking account of the 
coherence effects. 

Substituting (4.3) into (2.13), we obtain a formula for the crack opening 

5. The asymptotic of the sotution of (3.5) for short times. Large values of the parameter 
p in the Laplace transform correspond to short times (t-0). The approximate solution of 
the integral Eq.(3.5) can be obtained by the method of matched asymptotic expansions. We 
will find the degenerate solution of (3.5). Let I x1 I < 2 - c&‘*+~ (co - 1, 0 < e < I/*). Using 
the results from /14/ on the expansion of integrals with a delta-function type kernel in a 
parameter, the asymptotic representation of the Macdonald function for large values of the 
argument (K, (2) - Vs / (2~) exp (+I) and omitting components of order p-r+ (E > 1/4), in (3.5) , 
we also obtain a Carleman equation 
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The solution of (5.1) for large p is given by the expression 

u(L PI = 
sl/i-s(nfl) 1 

rn’l’hz? (I/,) -[++o(+)] f/I” - z,a 

Applying the inverse Laplace transformation to (5.2), we obtain the solution of the 
integral Eq.(3.5) for short times 

f++o(+j] 

(5.1) 

(5.2) 

(5.3) 

In this case the crack opening has the form 

w(xl,t) = -+{ [P,-ucr,-q(Po--p,)] I/P-x2,2-- (5.4) 
S~~6(1+n).rlp 
nac"a ?.I (I/*) k 

Expressions (5.3) and (5.4) yield the solution of the problem of a fixed hydraulic fault 
crack in a medium being consolidated for short times but greater than a certain time t*(t> t*), 
where t, is the time necessary for the crack opening under jumplike loading of the slit by 
a constant pressure of the fault fluid when taking account of processes of swelling of the 
medium by the saturated fluid. 

The flow of the fault fluid at x1 = 0 (discharge) is given by the expression 

where h is the height of a vertical crack, V, is the crack volume, and Q, is the quantity of 
fluid filtering in the strata per unit time through the crack surface. 

As t+o, by substituting expressions (4.3) and (4.4) into (5.5), we obtain 

As t-too we find from (5.5), (3.3) and (3.4) 

(5.6) 

(5.7) 

The asymptotic forms obtained for the solution of the non-stationary problem of a hydraulic 
fault crack in a medium saturated by a fluid can be used to determine the stratum parameters 
by hydrodynamic methods /15/. 

Keeping the pressure P,,in the borehole constant, the stratum parameters, the per- 
meability, porosity, etc., canbe estimatedon the basis of data on the change in the flow and 
(5.6) and (5.5). 
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ON THE RHEOLOGICAL INSTABILITY OF AN ELASTIC DAMAGING MEDIUM* 

V.I. KONDAUROV 

A medium is examined that contains damage of the microcrack type 
scattered over the volume, whose number and dimensions can vary under the 
action of applied stresses. Such materials include brittle rocks, certain 
metal alloys, glass, etc. To describe the behaviour of such media a model 
of continuum fracture of elastic bodies /l/ is used based on the local 
balance between the effective surface energy of the microcracks and the 
cumulative elastic energy of the material surrounding the microcracks. 
The constraints on the allowable strain values imposed by the Hadamard 
condition /2/, which is a necessary condition for the correctness of any 
dynamic or quasistatic problems, are investigated in an isothermal 
approximation. These constraints play the part of a strength criterion 
that is closely associated with the internal structure of the rheological 
relationships used. 

It is shown that violation of the Hadamard condition, identifiable 
with the rheological instability of the material, is accompanied by the 
formation of stationary surfaces of strain discontinuity, where, unlike 
an elastic-plastic dilating material 13, 41, the origination of 
rheological instability is possible for the model being used in both the 
loading process and in unloading of the material. The orientation of the 
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